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Plasma cell survival in the absence of B cell
memory
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Pre-existing serum antibodies play an important role in vaccine-mediated protection against

infection but the underlying mechanisms of immune memory are unclear. Clinical studies

indicate that antigen-specific antibody responses can be maintained for many years, leading

to theories that reactivation/differentiation of memory B cells into plasma cells is required to

sustain long-term antibody production. Here, we present a decade-long study in which we

demonstrate site-specific survival of bone marrow-derived plasma cells and durable antibody

responses to multiple virus and vaccine antigens in rhesus macaques for years after sustained

memory B cell depletion. Moreover, BrdU+ cells with plasma cell morphology can be detected

for 10 years after vaccination/BrdU administration, indicating that plasma cells may persist

for a prolonged period of time in the absence of cell division. On the basis of these results,

long-lived plasma cells represent a key cell population responsible for long-term antibody

production and serological memory.
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The question of plasma cell longevity and its role in main-
taining serum antibody levels has sparked considerable
debate over the past 50 years. Studies from the 1960's noted

that plasma cells had a half-life of only a few days at the early
stages of an immune response1–4, whereas later studies found that
plasma cells could survive for weeks/months5–7 or potentially
even longer8. Our initial studies in mice demonstrated that long-
lived plasma cells could survive in the absence of memory B cells9

and similar observations have been demonstrated in a number of
animal models10–12. Although plasma cells were detected up to a
year or more after irradiation-induced memory B cell depletion in
mice9, antigen-specific serum antibody declined compared to
those of untreated controls. Consequently, there has been a
resurgence of theories regarding the potential importance of cell
proliferation13,14, persisting antigen15,16 or non-specific activa-
tion of memory B cells16–18 to sustain plasma cell numbers and
antibody levels over the course of a human lifespan. To investi-
gate this question in more detail, here we show naturally acquired
and vaccine-mediated immune responses in rhesus macaques that
persist up to a decade after immunization and demonstrate the
existence of long-lived plasma cells that can independently
maintain serum antibody levels for many years in the absence of
memory B cells.

Results
Antibody decay rates pre and post memory B cell depletion.
Rhesus macaques were immunized against tetanus using a com-
mercially available vaccine (DTaP, Tripedia®). This represents a
common childhood vaccine antigen and the tools for measuring
antibody levels and memory B cell responses to tetanus are well
established19,20. The animals received four intramuscular doses of
vaccine at one-month intervals and we examined the magnitude
and durability of tetanus-specific immune responses for ~10 years
(n = 6 rhesus macaques and> 550 serum samples, Fig. 1). Anti-
body decay rates were measured during the first month after each
booster vaccination and found to have an antibody half-life of
19–21 days, similar to the decay rate of IgG molecules
themselves21–24. This indicates that most of the antibody-
secreting cells (ASC) induced early after vaccination are very
short-lived (Fig. 1a). From 1 to 6 months after the last vaccina-
tion, there was a clear biphasic decay curve in which the esti-
mated antibody half-life increased to 62 days. This is in contrast
to the more stable tetanus-specific antibody half-life of 1390 days
observed from 6 to 12 months after final vaccination (i.e.,
9–15 months after primary vaccination).

At 1.5 years after primary vaccination, 4 experimental animals
had CD20+ memory B cells depleted by the intravenous
administration of 3 weekly doses of anti-CD20 antibody
(Rituximab®, 20 mg/kg) and 2 control animals did not receive
anti-CD20 depletion but blood samples continued to be drawn on
a similar schedule (Fig. 1b). Early analysis of antibody decay rates
after memory B cell depletion indicated an average tetanus-
specific antibody half-life of 2.3 years and 2.1 years for the
experimental and control groups, respectively and these were not
significantly different (P = 0.80, Mann–Whitney test). However,
studies in humans indicate that anti-CD20 depletion may not be
as effective at removing B-cells from lymphoid tissues as it is for
depleting B cells from the circulation25–31, an outcome that might
be related to the degree of inflammation at the time of
administration32. To eliminate this potential caveat, the spleen
and inguinal lymph nodes (i.e., the draining lymph nodes after
vaccination in the quadriceps muscle) were surgically removed
from the experimental animals at ~3.5 years after primary
vaccination and intravenous anti-CD20 depletion was repeated
(three doses at weekly intervals, 20 mg/kg). Analysis of B cell

frequencies in the peripheral blood indicated that the first round
of anti-CD20 depletion removed> 99% of B cells from circulation
and the second round of anti-CD20 depletion reduced circulating
B cell numbers by ~ 85%. Recovery of peripheral B cell numbers
only reached an average of ~ 20% of the pre-depletion levels at
one year after the second treatment (Fig. 1c). In addition to
monitoring total B cell depletion, we also measured antigen-
specific memory B cell numbers by flow cytometry19 (Fig. 1d).
Tetanus-specific memory B cell frequencies increased from< 10/
106 B cells prior to vaccination to an average of 185± 60
(standard deviation, n = 5) memory B cells/106 B cells at 0.5 years
after the first vaccination (i.e., about 3 months after the last
vaccination). At 1.4 years after primary vaccination, tetanus-
specific memory B cell levels had declined to 34± 16 memory B
cells/106 B cells but remained detectable in the five animals that
had sufficient PBMC for analysis. The first round of anti-CD20
depletion was performed at 1.5 years after vaccination and when
tetanus-specific memory B cell frequencies were determined at 1.7
years (2.5 months after depletion), the tetanus-specific memory B
cell population had dropped to below our limits of detection (<
1/106 B cells). In contrast, tetanus-specific memory B cells in the
untreated control animals remained stable from 1.7 to 3.5 years
after vaccination. This indicates that tetanus-specific B cell
memory is long-lived in rhesus macaques but after anti-CD20
depletion and immune reconstitution of the general B-cell
repertoire, tetanus-specific memory B-cells remained below
detection when examined at 2.5 months or even 2 years later.

Following memory B cell depletion, the durability of tetanus-
specific antibody responses was monitored longitudinally in
comparison to non-depleted control animals from years 5 to 10
after primary vaccination (Fig. 1b). The tetanus-specific antibody
half-life observed among the experimental memory B cell-
depleted animals (T1/2 = 6.1 years, range; 4.7–8.2 years) was not
significantly different from the control animals (T1/2 = 7.3 years,
range: 5.2–12.2 years) (P = 0.80, Mann–Whitney test). At 10 years
after primary vaccination, the memory B cell-depleted experi-
mental group maintained an average anti-tetanus ELISA titer of
1015 ELISA Units (0.85 IU/ml) and based on a 6.1 year antibody
half-life and a protective threshold of 0.01 IU/ml33–36, these
vaccinated animals would be expected to remain protected
against tetanus for nearly 50 years without requiring further
vaccination—a time frame that exceeds the maximum lifespan of
rhesus macaques (~ 40 years when raised in captivity37).
Altogether, this indicates that after surgically removing potential
B cell reservoirs from solid tissues such as the spleen and the
draining lymph nodes, as well as all detectable tetanus-specific
memory B cells from the circulation, tetanus-specific serum
antibody titers continued to be maintained above the protective
threshold for the lifespan of the immune host with decay rate
kinetics that were indistinguishable from untreated controls.

Durable antibody responses to multiple antigens. To determine
if the durability of tetanus-specific antibody responses after
memory B cell depletion were unique to this antigen or more
broadly representative of immune responses to other types of
vaccine antigens or infections, we measured antibody responses
to Bordetella pertussis antigens (pertussis toxin, pertactin, fila-
mentous hemagglutinin (FHA)), Rhesus cytomegalovirus
(RhCMV), adenovirus, and a simian paramyxovirus that is
antigenically related to measles virus (Measles) (Fig. 2 and Sup-
plementary Fig. 1). Pertussis toxin, pertactin, and FHA are vac-
cine antigens included in the DTaP vaccine formulation and
similar to tetanus, these antibody responses underwent rapid
peaks and decay shortly after vaccination before reaching a pla-
teau stage of more durable antibody responses by 2–3 years after
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the final vaccination. Both anti-CD20-depleted experimental
animals and untreated control animals showed similar antibody
responses to each of these pertussis antigens. Control animal
#21169 appears to have been infected with B. pertussis at year 5
after vaccination because there was a spike in antibody titers to all
three pertussis antigens. Experimental animal #21139 may have
also been infected with B. pertussis since it showed a spike in
pertactin-specific antibodies at year 5 after vaccination even
though all of the animals were housed indoors from years 5
through 10 after vaccination. We speculate that they may have
been exposed to infected animal husbandry staff during this
period of time and this underscores the challenges associated with
measuring long-term immunity to contagious pathogens.

RhCMV causes a persistent infection in macaques and as
expected, we found that the antibody responses to this virus
remained stable or showed a slow increase in titers over time. It is
unclear how often animals are exposed/re-exposed to adeno-
viruses but we found that serological responses to this virus
remained at high levels throughout the period of observation. In
contrast, infection with a measles-like paramyxovirus provided
the opportunity to measure immune responses to an infectious
agent in the absence of known re-exposure. In 1999, a simian
paramyxovirus outbreak occurred at the Oregon National
Primate Research Center and infected a large number of animals
as well as appearing to have infected up to 4 animal husbandry

personnel20. The animals in this current study were born in 1999
and 5/6 of the animals seroconverted as indicated by the
induction of antibodies that cross-react with measles antigen by
ELISA (control animal #21169 remained seronegative). Para-
myxoviruses typically cause acute viral infection and following
the outbreak in 1999, no further outbreaks of the virus were
identified prior to necropsy. Moreover, after the animals were
brought indoors at year 5 of the study, there was little or no
chance of possible re-exposure from other animals in the colony.
This provided the opportunity to measure the duration of pre-
existing antibody responses to a natural viral infection in the
absence of re-exposure and in the absence of memory B cells after
anti-CD20 depletion. The untreated control animal
#20923 showed a measles-reactive antibody half-life of 10.6 years
whereas the estimated antibody half-life among the anti-CD20
depleted animals was 13.0 years (#21092), 10.5 years (#21128), 6.5
years (#21131), and 310 years (#21139), respectively. Together,
these results indicate that antibody responses to both vaccine and
viral antigens can be maintained for many years by long-lived
plasma cells without requiring continued replenishment by
memory B cells.

Localization of plasma cells to distinct bone marrow sites. To
further characterize the long-lived plasma cells identified in
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Fig. 1 Tetanus-specific antibody responses following memory B cell depletion. Six Rhesus macaques received 4 intramuscular doses of Tripedia® vaccine
(arrows, panel a) and tetanus-specific serum antibody responses were monitored closely for 15 months a to 10 years b. CD20+ B cells were depleted from
4 experimental animals (Experimental; E) at the indicated time points by administration of anti-CD20/Rituximab (b, c) and these animals also underwent
splenectomy and surgical removal of draining lymph nodes (LN) at 3.5 years after primary vaccination. Two control animals (Control; C) were monitored in
parallel throughout the experiment to compare tetanus-specific antibody levels and memory B cell frequencies. Efficiency of B cell depletion was
determined by staining PBMC for CD22+ B cells c and tetanus-specific memory B cells were directly measured by flow cytometry either before or after
memory B cell depletion performed at 1.5 years after vaccination d. The dashed line in a and b represents the tetanus-specific ELISA titer coinciding with
0.01 IU/ml calibrated based on the international serum standard, Tetanus Immunoglobulin TE-3. The dashed line in d indicates the limit of detection.
Further details describing the statistical model for determining antibody decay rates and half-life estimates can be found in the Methods (Eqs. 1 and 2)
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rhesus macaques, we determined their surface phenotype and
localization within different bone marrow compartments (Fig. 3).
In humans38, the long-lived bone marrow-derived plasma cell
population is phenotypically defined as CD19−CD38hiCD138+. In
our hands, CD19 expression on macaque B cells was relatively
dim compared to human B cells39 and therefore we substituted
CD20 as another common pan-B cell marker that is not expressed
on human plasmablasts40 or long-lived human plasma cells38 but
is highly expressed on macaque B cells39,41 and is suitable for
magnetic activated cell sorting (MACS) experiments. At 10 years
after vaccination, femoral bone marrow cells from a representa-
tive animal (#21131) were split into CD38+ and CD38− fractions
(Fig. 3a) or into CD20+ and CD20− fractions (Fig. 3b) by MACS
and the frequency of measles-specific and tetanus-specific anti-
body-secreting cells were determined directly ex vivo by ELI-
SPOT. These results indicate that measles-specific plasma cells
outnumbered tetanus-specific plasma cells by about 5-to-1 among
unfractionated bone marrow cells and although they could not be
detected among CD38- or CD20+ fractions, we observed a similar
ratio of antigen-specific plasma cells among the CD38+ and
CD20- fractions, respectively. Together this indicates that similar
to the long-lived plasma cells isolated from human bone

marrow38, the long-lived antigen-specific plasma cells in rhesus
macaques were comprised of CD38+CD20− cells.

Bone marrow biopsies are typically drawn from the iliac crest
and this represents the most accessible site for analyzing bone
marrow-derived plasma cells in humans. In contrast, most studies
on bone marrow-derived plasma cells in mice have been limited
mainly to the femur due to the small size of the bones in this
animal model. The adult human skeleton consists of 206 bones
and it is unclear if antigen-specific plasma cells home preferen-
tially to different locations or if they are equally distributed
among different bone marrow compartments. Although it was
not feasible to examine plasma cell frequencies among all bones
in a rhesus macaque, we focused our analysis mainly on the large
bones of the appendicular skeleton (humerus, ulna, radius, iliac
crest, femur, tibia, and fibula) in addition to rib and vertebrate
(Fig. 3). For the long bones, we also compared plasma cell
frequencies between proximal, middle, and distal sites within each
bone but we did not find any consistent differences between these
various locations within the same bone marrow compartment.
When measured directly ex vivo by ELISPOT at the time of
necropsy, tetanus-specific antibody-secreting plasma cells were
found at the highest frequency in the tibia, femur, and humerus
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equivocal or are below the limit of detection. Control animal Rh#21169 was seronegative for measles virus antigen
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(30, 21, and 19 ASC/107 cells, respectively) with little or no
difference in tetanus-specific plasma cell frequencies among B
cell-depleted experimental animals vs. untreated controls (Sup-
plementary Fig. 2) as expected based on serum antibody levels
(Figs. 1 and 2). The ELISPOT data from all 6 animals was
averaged (Fig. 3) and when compared to the femur, there were
significantly fewer tetanus-specific plasma cells identified in the
radius, rib, vertebrate, or iliac crest (5.5, 2.4, 2.1, and 3.0 ASC/107

cells, respectively; P< 0.05, mixed effect negative binomial
regression, Dunnett adjusted). We also found a non-significant
trend towards lower numbers of tetanus-specific plasma cells in
the fibula (6.8 ASC/107 cells) and ulna (10.0 ASC/107 cells)
compared to femur (Fig. 3c). One explanation for the reduced
frequency of tetanus-specific plasma cells in these particular bone
marrow compartments could be that they have fewer total IgG-
secreting plasma cells in general. We examined this issue by
measuring the frequency of total IgG-secreting cells by ELISPOT
in parallel to the tetanus-specific ELISPOT experiments (Fig. 3d).
Femoral IgG-secreting plasma cells were found at a frequency of
~ 12,600 ASC/106 bone marrow cells and although the numbers
were similar among humerus, ulna, radius, femur, and tibia, we
found a trend towards fewer total IgG-secreting plasma cells in
the fibula (P = 0.08, mixed effect negative binomial regression,
Dunnett adjusted) and significantly fewer IgG-secreting cells in
the rib, vertebrate and iliac crest when compared to the femur (P
< 0.05, mixed effect negative binomial regression, Dunnett
adjusted, Fig. 3d). However, the lower overall frequency of IgG-
secreting cells in these bone marrow compartments does not fully
explain the differential localization of vaccine-induced plasma
cells in this study since significantly fewer tetanus-specific plasma

cells were still observed in vertebrate and iliac crest even after
normalizing for the number of total IgG-secreting plasma cells at
each of these sites (Fig. 3e, P< 0.05, rank based mixed effect
linear regression, Dunnett adjusted). Likewise, the normalized
number of tetanus-specific/total IgG-secreting ASC was lower in
radius and rib when compared to femur despite not reaching
statistical significance (P = 0.13 and P = 0.06, respectively, rank
based mixed effect linear regression, Dunnett adjusted). These
results indicate that following tetanus vaccination in early
adolescence, there were significant differences in the frequency
of vaccine-induced antigen-specific plasma cells found in
different bone marrow compartments when examined 10 years
after immunization. This was an unexpected finding and leads to
many intriguing questions regarding the potential mechanisms
underlying differential localization or maintenance of plasma cells
within these unique bone marrow sites.

Identification of bromodeoxyuridine+ plasma cells. Bromo-
deoxyuridine (BrdU) is a thymidine analog that can be admi-
nistered to animals for a specified period of time during which it
is incorporated into the DNA of dividing cells. If cells cease to
divide, then the BrdU+ signal can be maintained indefinitely.
Antibodies specific for BrdU can then be used to identify cells
that proliferated at the time of BrdU administration and thus
provide a useful approach for determining the survival of long-
lived cells in the absence of further cell division. BrdU incor-
poration studies in mice demonstrated that IgG+ plasma cells
could be identified by flow cytometry for up to 3 months after
cessation of BrdU administration and indicated that, relative to
the lifespan of a mouse, these represented a long-lived non-
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dividing cell population7. This is consistent with prior studies in
rats that also identified long-lived cells with plasma cell mor-
phology after administration of3H-thymidine6,8. However, in
each of these examples there was still a remote possibility that
plasma cells could be repopulated by memory B cells that dif-
ferentiate into plasma cells with little or no proliferation and
thereby retain the BrdU+ or3H-thymidine+ signal when examined
at later time points. In our studies, rhesus macaques received
BrdU for 12 days after the second, third, or fourth vaccination
and we used immunohistology to identify BrdU+ cells at 3.5 or 10
years after vaccination (Fig. 4). As noted in Fig. 1, the spleen and
draining lymph nodes were surgically removed ~3.5 years after
primary vaccination at the time that peripheral anti-CD20
depletion was repeated. When we examined the spleen and
lymph node samples from these animals histologically, we iden-
tified BrdU+ cells with characteristics of plasma cells including a
larger size distribution compared to lymphocytes and a cartwheel
or “clock face” chromatin pattern42,43 that becomes readily
apparent when staining for BrdU+ DNA. This plasma cell mor-
phology42,43 is consistent with the CD38+CD20− plasma cell
phenotype described in Fig. 3.

Since all four of the experimental memory B cell-depleted
animals underwent splenectomy and lymph node excision,

analysis of long-lived BrdU+ plasma cells in the spleen and
lymph node at 10 years after vaccination was performed only
among the intact control animals. Importantly, we also identified
BrdU+ cells with plasma cell morphology in the bone marrow
(e.g., humerus and femur) at 10 years after vaccination in animals
that had previously undergone anti-CD20 treatment to remove
memory B cells several years earlier (Fig. 4). The identification of
BrdU+ cells with plasma cell morphology by histology provides
independent confirmation of long-lived plasma cells that supports
the functional data (Figs. 1 and 2) demonstrating that antibody-
secreting plasma cells may survive for 10 years or more in the
absence of repopulation by memory B cells.

Discussion
Pre-existing antibodies often represent the first line of defense
against microbial pathogens and are the basis for protective
immunity elicited by many successful vaccines. Studies in
rodents have shown that antibody-secreting plasma cells
may survive for several weeks or months but this work is
limited by the short lifespan of the host. In these current studies,
we examined the mechanisms underlying long-term antibody
maintenance in rhesus macaques, a species with a lifespan more
similar to humans. We found that antibody responses following

LN, 3 years

LN, 10 years

Humerus, 10 years

Spleen, 3 years

Spleen, 10 years

Femur, 10 years

Fig. 4 Identification of BrdU+ plasma cells at 3.5 and 10 years after BrdU administration. Each panel shows a representative microscopic image of tissue
samples from rhesus macaques after immunohistochemical staining for BrdU+ cells. Paraffin-embedded bone marrow and tissue samples were stained for
BrdU and counterstained with Mayer’s hematoxylin. BrdU+ plasma cells were identified based on their size and their characteristic “clock face” nuclei (see
inset images). Sections showing draining lymph node (LN) or spleen at 3.5 years after primary vaccination were obtained by surgical removal from
experimental CD20-depleted animals (Rh#21139 and Rh#21131, respectively). LN and spleen samples examined at 10 years post-vaccination were obtained
from one of the control animals (Rh#20923) whereas sections of humerus and femur came from experimental CD20-depleted animals (Rh#21128 and
Rh#21131, respectively) at necropsy. A 20 μm scale bar is included in each panel
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tetanus vaccination were long-lived and likely to provide lifelong
protective immunity against this disease. Antibody responses to
other viral and vaccine antigens were similarly long-lived
regardless of memory B cell depletion by anti-CD20 adminis-
tration and surgical removal of the spleen and draining lymph
nodes. When we examined different bone marrow compartments,
we were surprised to find that tetanus-specific plasma cells
were not equally distributed among different bone marrow
sites but instead were enriched in certain long bones such as the
femur, tibia, and humerus. We used BrdU incorporation
studies as an independent approach to identifying long-lived
cells with plasma cell morphology in the bone marrow for
≥ 10 years after vaccination/BrdU administration. Altogether,
these studies provide a framework in which the maintenance of
long-term serum antibody responses appears to be maintained by
long-lived plasma cells independently of memory B cells and
indicates that vaccine approaches that elicit long-lived plasma
cells will be the most effective at maintaining persistent antibody
responses.

Potential mechanisms underlying the maintenance of long-
term antibody responses can be generally divided into memory B
cell-dependent and memory B cell-independent models16. The
two most commonly asserted memory B cell-dependent models
involve either persisting antigen or non-specific polyclonal acti-
vation of memory B cells to proliferate and differentiate into
antibody-secreting plasma cells. As noted in Fig. 1, we found that
antibody half-life estimates changed dramatically over the course
of time and similar to other models44 it is likely that early anti-
body responses are determined by a combination of short-lived
and long-lived plasma cells and the generation of new plasma
cells in response to antigen depots. However, by 2–3 years after
vaccination, antibody decay rates stabilize and there are several
lines of evidence indicating that maintenance of long-term anti-
body responses at this stage of the immune response are no
longer antigen-dependent. For example, studies involving the
persistence of radiolabelled antigens revealed that> 99% of
injected antigen is degraded within 2–4 days and the remaining
antigen, presumably in the form of immune complexes, decays
with about an 8-week half-life16,45. Addition of alum adjuvant is
unlikely to greatly alter the duration of antigenic stimulation
since intact alum granulomas may no longer be immunogenic
after 14 days46. In our studies, we waited for over 1 year after the
final vaccination in order to allow persisting antigen to dissipate
and antibody titers to stabilize before performing memory B cell
depletion by anti-CD20 administration (Fig. 1). We further
removed the potential caveat of persisting antigen/immune
complexes in lymphoid tissues by surgically removing the spleen
and draining lymph nodes and repeating memory B cell depletion
at 3.5 years after primary vaccination and we still found no sig-
nificant impact on pre-existing antibody maintenance against
tetanus (Fig. 1) or other virus and vaccine antigens (Fig. 2).
A recent study identified long-lived plasma cells in the human
intestine47 and it is possible that antigen-specific memory B cells
reside in these locations as well. Although we did not examine
intestinal sites of antibody production, we believe that it is
unlikely that there are appreciable numbers of gut-associated
tetanus-specific memory B cells in comparison to the spleen and
draining lymph nodes after intramuscular DTaP vaccination. In
addition, it may be unlikely that gut-associated memory B cells
would be involved with repopulating IgG-secreting plasma cell
populations in the bone marrow without migrating through the
bloodstream and producing more memory B cells in order to
sustain both memory B cells and plasma cell numbers. Since
circulating tetanus-specific memory B cells remain below detec-
tion after anti-CD20 depletion (Fig. 1d), this would suggest that
memory B cells from tertiary sites besides the spleen and lymph

nodes play little or no role in maintaining systemic antibody
production.

In terms of a model of memory B cell-dependent humoral
immunity based on polyclonal non-specific memory B cell
activation16–18, we likewise found no sign of loss in antibody
maintenance despite effective removal of memory B cells to below
our limits of detection (Fig. 1d). According to the polyclonal
stimulation model16–18, ongoing or intermittent infection is
believed to activate antigen-specific memory B cells through T
cell-mediated cytokines or TLR-based activation that in turn,
would result in proliferation and differentiation into more
antibody-secreting plasma cells. Although B cells are readily
activated to proliferate non-specifically in vitro17,48, the in vivo
relevance of these results is difficult to ascertain since subsequent
studies have been unable to demonstrate non-specific bystander
activation resulting in increased levels of unrelated antibodies
despite close serological monitoring of human subjects after
defined episodes of vaccination or infection16,49,50. Our data
(Figs. 1 and 2) and B cell ablation studies in humans51–58 together
indicate that long-term serum antibody responses can be main-
tained for prolonged periods of time without requiring polyclonal
stimulation of memory B cells.

Consistent with our results and a model of memory B cell-
independent antibody production by long-lived plasma cells,
several studies in humans have shown that antibody responses to
common virus and vaccine antigens are relatively stable when
followed for 4 months to 2.5 years after anti-CD20 depletion51–57

or CD19-directed chimeric antigen receptor-based adoptive T cell
therapy58. However, since rituximab may not efficiently deplete B
cells from lymphoid tissues25–31, the potential role of memory B
cells in maintaining long-term antibody responses in humans had
remained unclear. Our results differ somewhat from our prior
work performed in mice in which gamma-irradiation was used to
eliminate memory B cells in vivo9. After irradiation, antibody
responses persisted but declined in comparison to untreated
controls. We believe that this may have been due to non-specific
damage to plasma cells or their supportive microenvironment
and that this led to shorter plasma cell survival curves. In our
current studies in Rhesus macaques, we used targeted depletion of
CD20+ B cells instead of whole-body irradiation and this may
explain why we found no significant difference in antibody titers
between memory B cell-depleted animals and control animals
(Fig. 1, P = 0.80, Mann-Whitney test). Tetanus-specific plasma
cells in the spleen or draining lymph nodes were rare, residing
either near or below our limits of detection by ELISPOT at 3 or 10
years after vaccination (3.6 per 107 spleen cells or ≤ 1 per 8 × 106

lymph node cells). This, along with the continued maintenance of
serum antibody titers despite the surgical removal of the entire
spleen and draining lymph nodes (Figs. 1 and 2), provides further
supportive evidence indicating that the bone marrow is indeed a
major site of systemic vaccine-induced antibody production in
non-human primates.

ELISPOT analysis of tetanus-specific plasma cells revealed that
10 years after immunization, long-lived vaccine-induced plasma
cells were preferentially identified in certain bone marrow com-
partments (e.g., femur, tibia, humerus) in contrast to other bone
marrow sites (e.g., rib, radius, vertebrae, iliac crest) (Fig. 3). This
was an unexpected finding and leads to several questions
regarding the nature of these results. Are these observed differ-
ences due to the site of vaccination, the type of antigen, the age at
vaccination, changes in bone marrow composition over time (e.g.,
hematopoiesis vs. adipose deposits) or other currently unknown
criteria that influence the preferential homing or survival of
plasma cells? Could preferential localization to specific bone
marrow sites be determined by the age at the time of vaccination
or the age at time of in vivo analysis? Rhesus macaques mature
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more rapidly than humans and reach reproductive maturity by
3–5 years of age and have an average lifespan of about 27–35
years in captivity37. The animals in our study were ~ 3 years old
at the time of vaccination and bone marrow analysis was per-
formed at ~ 14 years of age. Newborn mammals initially have no
fat in their bone marrow but during the aging process, fat
accumulates in the bone marrow and reaches ~70% of the mar-
row space in appendicular bones by adulthood in humans59.
Similar to humans, we found that long bones in adult rhesus
macaques (femur, humerus, etc.) contained substantial numbers
of adipocytes and the BrdU+ cells with plasma cell morphology
were often surrounded by adipocytes (Fig. 4). It is unclear if the
fat content of different bone marrow sites has an impact on the
localization or survival of plasma cells in bone marrow or if other
cell types/survival factors may play a larger role with plasma cell
maintenance60–66. A time course study following vaccination will
likely be necessary to determine if particular bone marrow
compartments are preferentially seeded with newly generated
plasma cells. Alternatively, it is possible that all bone marrow sites
initially acquire a similar frequency of vaccine-induced plasma
cells but some sites may be more capable of sustaining plasma cell
numbers long-term in comparison with others. Elucidating the
factors underlying this new finding will be important for better
understanding the bone marrow compartment and its contribu-
tion to maintaining long-term humoral immunity.

Together, our studies demonstrate that following depletion of
peripheral CD20+ B cells (including tetanus-specific memory B
cells) by anti-CD20 administration and surgical removal of the
spleen and draining lymph nodes, prolonged antigen-specific
serum antibody titers continued to be maintained for over 10
years after vaccination by long-lived plasma cells that reside in the
bone marrow compartment. Further studies are needed to
determine why vaccine-induced plasma cells are preferentially
localized in certain bone marrow sites in contrast to others
(Fig. 3) and a better understanding of the mechanisms involved
with determining the lifespan of individual plasma cells will be
critical for developing new and more effective vaccine approaches
capable of eliciting long-term protective humoral immunity.

Methods
Rhesus macaques. The study was performed in strict accordance with the
recommendations described in the Guide for the Care and Use of Laboratory
Animals of the National Institute of Health, the Office of Animal Welfare and the
United States Department of Agriculture. All animal work was approved by the
Oregon National Primate Research Center Institutional Animal Care and Use
committee. The ONPRC has been continuously accredited by the American
Association for Accreditation of Laboratory Animal Care since 1974 (PHS/OLAW
Animal welfare Assurance #A3304–01). The study included 4 experimental animals
(anti-CD20 treatment, splenectomy, surgical removal of draining lymph nodes)
and 2 control animals for comparison. Animals with a prior history of diarrhea
were excluded from enrollment in the study. Rhesus macaques (Macacca mulatta)
were housed in either small groups, paired, or individual housing during the course
of the study and fed twice daily with a standard commercial primate chow with
water available ad libitum. Blood draws, vaccinations, and BrdU administration
were performed under ketamine or telazol anesthesia. For surgery, ketamine and
isoflurane were used for anesthesia and all efforts were made to minimize pain.
Animals (males, Indian-Chinese origin, 2.8–3.2 years of age) were vaccinated four
times at monthly intervals with Tripedia (Diphtheria and Tetanus Toxoids and
Acellular Pertussis Vaccine Adsorbed; DTaP), by intramuscular injection into the
quadriceps muscle. BrdU (25 mg/kg) was dissolved in sterile PBS and administered
intravenously for 12 consecutive days starting four days after the second
(Rh#20923 and Rh#21169), third (Rh#21091 and Rh#21139), or fourth (Rh#21128
and Rh#21131) vaccination (2 animals/group).

B cell depletion. CD20+ B cells were depleted from four animals by administering
anti-CD20 antibody (Rituximab; 20 mg/kg, Genentech) three times at 1-week
intervals. Each of the vaccinated rhesus macaques had similar antibody responses
to tetanus and there were no selection criteria used to determine the non-
randomized group allocation with the exception of standard animal husbandry
considerations involving feasibility of group or paired housing. The first 3-dose
depletion regimen was performed 14 months after the fourth vaccination and the

second 3-dose depletion series was performed at 3.5 years after the fourth vacci-
nation, which was ~3 months after recovery from splenectomy and surgical
removal of draining lymph nodes. Analysis of the efficiency of in vivo B cell
depletion and immune reconstitution was performed by staining for residual CD22
+ B cells (anti-CD22 antibody; 0.5 μl, Cat# MHCD2204, clone RFB-4) in PBMC at
the indicated time points.

Flow cytometry. PBMC were stained with α-CD20 (2.5 μl, Beckman Coulter,
Clone B9E9), α-IgD (1 μl, Southern Biotech, Goat polyclonal antibody, δ heavy
chain-specific, Cat#2030–09) and LIVE/DEAD® fixable Aqua dead cell stain (1:500
dilution, Life technologies, Cat#L34957). Only limited numbers of PBMC were
available from Rh#21131 at early time points after memory B cell depletion and
these samples were lost for technical reasons. To enumerate tetanus toxoid (TT)-
specific memory B cells, 10 × 106 cells were stained with 0.25 µg of rTT.C-FITC
(List Biological Laboratories, Cat#196 A) and 0.1 μg of rTT.C-biotin. Specificity
control samples were incubated with 0.25 µg of rTT.C-FITC (List Biological
Laboratories, Cat#196) and 0.1 µg of biotinylated human serum albumin (HSA-
biotin). HSA-biotin and rTT.C-biotin were prepared using EZ-Link™ Sulfo-NHS-
LC-Biotin (Thermo Scientific Cat#21335) following manufacturer’s instructions.
Cells were stained in 50 µL volumes overnight at 4 °C, washed, and incubated with
streptavidin-APC (diluted 1:500, Cat#S868, Molecular Probes) for 30 min at 4 °C.
Cells were washed again and fixed with 2% formaldehyde in PBS. Events were
acquired on an LSR Fortessa (BD Biosciences) and analyzed with FlowJo software
(FlowJo LLC).

Histology. For histological analysis of plasma cells, paraffin embedded, formalin
(10% buffered in phosphate) fixed tissues were cut in 5 µm slices and mounted on
slides. Sections were stained using a modified protocol with a BrdU in-situ
detection staining kit (Cat#550803, BD Pharmingen). Sections were deparaffinized
in Xylene, rehydrated in ethanol (100%, 95%, 85%, 75, and 50%) before antigen
retrieval in 10 mM citrate buffer, pH 5 in a pressure cooker. When the pressure
cooker had a substantial amount of steam coming out the stopper, the slides were
incubated for 10 min. The pressure cooker was then removed from the hot plate
and left to cool for 1 h before opening and then the container with the slides was
removed and allowed to cool slowly. The slides were dipped in water and then
washed 3 × 3 min in PBS. Endogenous peroxidase was blocked with 3% H2O2 in
methanol for 30 min and after a wash in water, the sections were incubated in 2 N
HCl for 27 minutes. After 3 × 3 min washing steps in water followed by 3 × 3min
washing steps in PBS, the sections were pre-blocked with dilution buffer for 20 min
before being incubated overnight in a humid chamber at 4 °C with anti-BrdU
antibody (from the BrdU in-situ detection staining kit, Cat#550803, BD Phar-
mingen) on an orbital shaker. The following day, the sections were washed 3 ×
3 min/each in PBS, incubated with Streptavidin-HRP for 30 min at room tem-
perature on an orbital shaker, washed again and then the stain was developed using
DAB substrate according to the manufacturer’s instructions. The sections were
counterstained using Mayer’s hematoxylin, rinsed with water, dipped in 0.1%
sodium bicarbonate a few times until they appeared blue and then dehydrated
(50%, 75%, 85%, 95%, and 100% ethanol), cleared in xylene, and mounted with
Permount.

Bone marrow fractionation by MACS. Cryopreserved bone marrow cells were
thawed and cell numbers were determined. Unfractionated cells were reserved for
pre-fractionation ELISPOT and flow cytometry assays. Depletion of CD20+ cells
was achieved by treating the BM cells with anti-human CD20 antibody-coated
magnetic activated cell sorter (MACS) microbeads (25 μl beads for 50 × 106 cells,
Cat#130-091-105, Miltenyi Biotec) for 15 min at 4 °C followed by fractionation
using a MACS LS column (Cat#130-042-401, Miltenyi Biotec) according to the
manufacturer’s instructions. The CD20- (unbound) flow-through fraction was
collected and then the bound fraction containing CD20+ cells was eluted from the
column. Both fractions were reserved for ELISPOT and flow cytometry analysis.
CD38 fractionation was conducted by first labeling the bone marrow cells (Anti-
human CD38; Caprico Biotechnologies Cat#100851) for 1 h at 4 °C prior to
incubation with anti-biotin microbeads (100 μl beads for 50 × 106 cells, Cat#130-
090-485, Miltenyi biotech) for 15 minutes. The labeled and unlabeled cells were
separated using the LS column as described for the CD20 bead-based fractionation.
Cell numbers were determined for the enriched and the depleted fractions. The cell
purity after CD38 fractionation was monitored by flow cytometry using anti-
human CD38 antibody conjugated with Biotin (0.5 μg, Cat#100851, Caprico Bio-
technologies) in combination with Streptavidin-APC (diluted 1:500, Cat#S868,
Molecular Probes). Unfractionated and CD38-enriched samples were comprised of
16.1% and 26.8% CD38+ cells, respectively and the CD38-depleted fraction was
comprised of 99.9% CD38− cells. CD20 fractionation was monitored by flow
cytometry using anti-human CD20 antibody conjugated with ECD (2.5 μl, Cat#
IM3607U, Beckman Coulter). Unfractionated and CD20-enriched samples were
comprised of 0.5% and 74.5% CD20+ cells, respectively and the CD20-depleted
fraction was comprised of 99.9% CD20− cells.

ELISA and ELISPOT. Serum antibodies were measured using antigen-specific
enzyme-linked immunosorbent assays (ELISA). Antigens included tetanus toxoid
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(0.125 μg/ml, Cat#582231, Calbiochem), diphtheria toxin (1 μg/ml, Cat#150, List
Biological Laboratories), pertussis toxin (1 μg/ml, Cat#180 List Biological labora-
tories) filamentous hemagglutinin (0.5 μg/ml Cat #170, List Biological Labora-
tories), Pertactin (0.5 μg/ml BEI Resources, NR-34571), inactivated measles-
Edmonston strain (1:250 dilution, AbD Serotec, PIP013), RhCMV strain 68-1
(1:1600 dilution, an in-house, detergent extract of RhCMV 68-1-infected rhesus
fibroblasts treated with 2-mercaptoethanol to reduce non-specific binding to IgG)
and H2O2-inactivated adenovirus (1:500 dilution, an in-house reagent consisting of
Adenovirus serotype 5 with E1/E3 deleted). After coating with a previously opti-
mized concentration of each antigen, the ELISA plates were washed and blocked
with 5% nonfat dry milk for 1 h at room temperature. Serum samples were serially
three-fold diluted and added to the plate and incubated for 1 h at room tem-
perature. The plates were washed and incubated with horseradish peroxidase-
conjugated goat anti-monkey IgG-Fc specific antibody (1:4000 dilution, Cat
#GAMon/IgG(Fc)/PO, Nordic Immunology) for 1 h at room temperature. After
washing the plates, colorimetric detection reagents containing 0.4 mg/ml o-phe-
nylenediamine and 0.01% hydrogen peroxide in 0.05M citrate buffer (pH 5) were
added and the reaction was stopped after 20 min by the addition of 1M HCl.
Optical density at 490 nm was measured using a VersaMax ELISA plate reader
(Molecular Devices). A standard (internal positive control) was included on all
plates to normalize the ELISA values between plates and between assays performed
on different days. Antibody titers were determined by log-log transformation of the
linear portion of the curve using 0.1 optical density as the endpoint and performing
conversion of the final values. Samples were tested in duplicate and paired samples
with> 25% coefficient of variation (CV) were repeated. Tetanus-specific IgG titers
from rhesus macaques were converted to international units/ml (IU/ml) after
calibration with the human international serum standard, Tetanus Immunoglo-
bulin TE-3, 120 IU/ml obtained from the National Institute for Biological Stan-
dards and Controls (Hertfordshire, England) using the polyclonal goat anti-
monkey IgG-Fc detection reagent that was used for all rhesus macaque serum
samples.

The frequency of tetanus-specific ASC, as well as total IgG-secreting ASC was
measured by ELISPOT using plates coated with the same antigens used for ELISA.
96-well PVDF-bottomed plates (MAIPS- 4510, EMD Millipore) were coated with
tetanus toxoid (1 μg/ml, Cat #582231, Calbiochem) inactivated measles (1:50
dilution, Cat #PIP013 BIO-RAD/AbD Serotec), or goat anti-monkey IgG/IgA/IgM
antibody-heavy and light chain (10 μg/ml, Cat # 617-101-130, Rockland Inc.). The
wells were blocked by incubating in RPMI medium containing 10% FBS for 1 h at
room temperature. When feasible, ten wells were each loaded with one million
cells/well for the tetanus-specific ELISPOT assay and serial three-fold dilutions of
cells starting at 105 cells/well were added to similar wells for anti-IgG ELISPOT.
Plates were incubated at 37 °C for 6 h. After incubation, the plates were washed and
HRP-conjugated goat anti-monkey IgG-Fc-specific (1:4000 dilution, Cat #
GAMon/IgG(Fc)/PO, Nordic Immunology) was added. The plates were incubated
overnight at 4 °C. Next, the plates were washed and the spots were detected by
adding a filtered solution of 0.5 mg/ml of AEC (3-amino 9-ethyl carbazole) in
0.1 M sodium acetate containing 0.05% hydrogen peroxide. After gently washing
the plates in running water, the detachable backings were taken off to facilitate
rapid drying. The plates were air-dried for 6–24 h before counting the spots by
visual inspection under a stereomicroscope.

Splenectomy and inguinal lymph node removal. The spleen and both left and
right inguinal (draining) lymph nodes were removed in the experimental group
animals at ~3.2 years after the 4th vaccination. Positioning was in dorsal recum-
bency, with sterile prep and draping of the anterior abdomen. The abdomen was
entered via 7 cm anterior ventral midline laparotomy, followed by placement of a
medium Balfour and moistened lap sponges for visceral exposure. The spleen was
placed in traction and the gastrosplenic ligament was transected. Moving from
distal to proximal, the hilar splenic vessels and then the short gastric arteries were
doubly ligated with either 3–0 coated Vicryl or large Hemoclips, and transected.
The spleen was removed and after removal of the retractors, closure was accom-
plished with continuous 3–0 coated Vicryl in the rectus sheath and subcutis, fol-
lowed by skin apposition with running intradermal 4–0 Monocryl. Prior to
recovery, the inguinal region was prepped and draped bilaterally. Two cm skin
incisions were created over the inguinal lymph nodes, followed by en bloc resection
of all lymphatic tissue and surrounding adipose tissues using blunt dissection and
the Bovie Closure was performed with continuous 4–0 Monocryl in the subcutis
and skin. Recovery was on the operating room table until extubation. Medications
used during surgery included Ketamine, oxygen, isoflurane, electrolytes, lactated
ringer, Ophthalmic ointment, Bupivicain HCl, Lidocaine 1% with epinephrine,
Glycopyrrolate, and Hydromorphone.

Statistical analysis. Based on the observed antibody decay rate kinetics, the group
sizes of n = 4 experimental animals and n = 2 controls, we would be sufficiently
powered (80%) to detect an effect size of 3.8 in antibody decay rates between
groups using two-sided t-test with significance level of 0.05. The Effect size was
defined as mean difference divided by standard deviation. Due to the nature of
long-term follow-up over the course of >10 years, researchers were not blinded to
group allocation. However, partial blinding was used during data analysis as the

final datasets were independently reviewed and analyzed by two biostaticians (B.P.
and L.G.).

A two-stage approach was used to estimate a global decay rate of antigen-
specific serum antibodies. First, regression fits on the log ELISA units vs. time after
peak ELISA units (days) for each animal were used to estimate half-life.

ln yð Þ ¼ β0 þ β1T ð1Þ
In this case, y is ELISA units, β0 is intercept, β1 is slope, and T is time after peak

ELISA units (days). Then the average slopes (β1) were calculated, and used as an
estimated decay rate. Half-life was defined by

T̂1
2
¼ ln 1

2

� �

β1
: ð2Þ

This is a similar procedure to linear mixed modeling, random intercept and
slope model that was used to estimate global intercept and slope. Due to the
convergence and number of parameter problems as well as some periods with
smaller number of observations, we adopted a regression fit on individual subjects
rather than a random intercept and slope model. If β1>0, then a half-life could not
be reached and those were considered to be infinity.

For ELISPOT experiments, the differential distribution of tetanus-specific
antibody-secreting cells (ASC) and total IgG-secreting ASC was determined using a
random intercept mixed effect negative binomial regression model to not only
account for within subject correlation, but adjusting for overdispersion67 in
Poisson counts followed by post hoc comparisons in which the femur was used as
the reference location and all other bone marrow compartments were compared to
femur. For determining differences between bone marrow sites vs. femur after
normalizing for the proportion of tetanus-specific ASC among total IgG-secreting
ASC, we performed a rank based random intercept mixed effect linear regression
model followed by post hoc comparisons in which the femur was used as the
reference location and all other bone marrow compartments were compared to
femur. The comparative data is presented as Dunnett adjusted P values.

Data availability. The data supporting the results of this study are available within
the article and its Supplementary Information files, or are available from the
corresponding author upon reasonable request.
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