PCRBIO Taq DNA Polymerase

Product description:

PCRBIO Taq DNA Polymerase uses the latest developments in polymerase technology and buffer chemistry to enhance PCR speed, yield and specificity. The enzyme and buffer system allow for superior PCR performance on complex templates such as mammalian genomic DNA.

PCRBIO Taq is a robust enzyme for all your everyday PCR applications including genotyping, screening and library construction. PCRBIO Taq DNA Polymerase can perform consistently well on a broad range of templates (including both GC and AT rich).

PCRBIO Taq DNA Polymerase has an error rate of approximately 1 error per 2.0 x 10⁵ nucleotides incorporated. PCR products generated with PCRBIO Taq DNA Polymerase are A-tailed and may be cloned into TA cloning vectors.

Component	500 units	2000 units	4000 units
PCRBIO Taq DNA polymerase (5u/µl)	1x 100µl	4x 100µl	8x 100µl
5x PCRBIO reaction buffer	4x 1ml	16x 1ml	32x 1ml

Shipping and Storage

On arrival the kit should be stored at -20°C. Avoid prolonged exposure to light. If stored correctly the kit will retain full activity for 12 months. The kit can be stored at 4°C for 1 month. The kit can go through 30 freeze/thaw cycles with no loss of activity.

Limitations of product use

The product may be used only for in vitro research purposes.

Technical support

For technical support and troubleshooting please email technical@pcrbio.com the following information:

Amplicon size Reaction setup Cycling conditions Screen grabs of gel images

Important considerations

PCRBIO 5x reaction buffer: The 5x reaction buffer contains 15mM ${\rm MgCl_2}$, 5mM dNTPs, enhancers and stabilizers. It is not recommended to add further PCR enhancers or ${\rm MgCl_2}$ to the reaction. The buffer composition has been optimised to maximise PCR success rates.

Template: For eukaryotic DNA use between 5ng and 500ng per reaction, for cDNA use below 100ng per reaction.

Primers: Primers should have a predicted melting temperature of around 60°C, using default Primer 3 settings (http://frodo.wi.mit.edu/primer3/). The final primer concentration in the reaction should be between $0.2\mu M$ and $0.6\mu M$.

Annealing: We recommend performing a temperature gradient to experimentally determine the optimal annealing temperature. Alternatively, we recommend a 55°C annealing temperature then increase in 2°C increments if non-specific products are present.

Extension: Optimal extension is achieved at 72°C. The optimal extension time is dependent on amplicon length and complexity of template. 15 seconds per kilobase (kb) is recommended for amplification from eukaryotic DNA for amplicons between 1kb and 6kb. For shorter amplicons a 1 second extension is sufficient.

Reaction setup

1. Prepare a master mix based on the following table:

Reagent	50µl reaction	Final concentration	Notes	
5x PCRBIO Reaction buffer	10.0µl	1x		
Forward primer (10µM)	2.0µl	400nM	See above for optimal primer design See above for template considerations	
Reverse primer (10µM)	2.0µl	400nM		
Template DNA	<100ng cDNA, <500ng genomic	variable		
PCRBIO Taq DNA polymerase (5u/μl)	0.25µl - 1.0µl			
PCR grade dH ₂ O	Up to 50µl final volume	•••••		

2. Cycle using conditions based on the following table:

Cycles	Temperature	Time	Notes
1	95°C	1min	Initial denaturation
40	95°C	15 seconds 15 seconds	Denaturation Anneal Extension (15 seconds per kb)