

DNA Ladder III

DNA Concentration: 103µg/ml (+/- 1%)

Lot #: 20031

Cat. No.	Size	Volume
42-424	200 lanes	1 x 1.0 mL
42-425	500 lanes	1 x 2.5 mL

Reagent for in-vitro laboratory use only

Description

DNA Ladder III is a broad range dsDNA Ladder with bands from 80bp to 10Kb. The ladder can be used to quantitate the amount of DNA in a sample since the mass of DNA in each band in the ladder has been calibrated to range from 4 to 50ng (see figure).

The ladder is supplied in "ready-to-load" format in modified Type IV gel loading buffer: Tris-EDTA, pH8.5, 8% sucrose, 0.05% Bromophenol Blue.

Composition of Storage Buffer

Tris-EDTA, pH8.5, 8% sucrose, 0.05% Bromophenol Blue.

Storage Conditions

Apex custom DNA ladders may be kept safely at room temp. for at least 3 months. Ladders are guaranteed for 12 months from date of shipment when stored at 4°C. Aliquot product if necessary to avoid repeated freezing and thawing cycles.

Quality Control

Agarose gel analysis shows that all bands are present at the expected location and band intensity.

Shipped via overnight carrier at ambient temp.

	bp	ng/5µl	ng/10μl
	10,000	50	100
	8,000	40	80
	6,000	30	60
	5,000	25	50
	4,000	20	40
	3,000	15	30
	2,500	13	26
	2,000	10	20
	1500	8	16
	1030 900 800 700 600 500 400	50 45 40 35 30 50	100 90 80 70 60 100
=	300	15	30
	200	10	20
	100	5	10
	80	4	8

5 μL DNA Ladder/lane, 1% agarose in 1X TAE stained with ethidium bromide

Suggestions for use

- **Important**: Mix ladder briefly before use. Do not heat the ladder.
- Load 5 µL of ladder per lane for gel wells of ~5-10mm width. This translates to the indicated ng/band (see Fig.)
- Agarose gel electrophoresis: Prepare 1% gel. The dye should migrate 60 - 70% the length of the gel.
- Polyacrylamide gel electrophoresis: Prepare 8% gel. The dye should migrate approx. 90% the length of the gel.
- Ethidium bromide (0.5 μg/mL) is the recommended gel stain.

FOR RESEARCH USE ONLY

Customer Service:	(800) 789.5550
Fax:	(888) 789.0444
Technical Service:	(800) 789.5550
Web:w	ww.geneseesci.com
e-mail:suppo	ort@geneseesci.com